加拿大商科研究生GMAT逻辑比例问题干货解析
加拿大商科研究生留学大家都知道其实很多逻辑题中都包含了一些基本的数学概念或者说数学基本规则,其中像比例问题是逻辑中非常爱考的话题。
Motorcycle-safety courses,offered by a number of organizations,teach motorcyclists important techniques for handling their vehicles and for safely sharing the road with other road with other road users.If more motorcyclists took these courses,there would be fewer serious motorcycle accidents.Data show that 92 percent of the motorcyclists who are involved in a serious motorcycle accident have never taken a motorcycle-safety course.
In assessing whether the data cited provide support for the position taken about more motorcyclists’taking the courses,it would be most useful to determine which of the following?
(A)Whether significantly more than eight percent of motorcyclists have taken a motorcycle-safety course?
(B)Whether it is riskier for a motorcyclist to ride with a passenger behind the rider than to ride alone?
(C)Whether the different organizations that offer motorcycle-safety courses differ in the content of the courses that they offer?
(D)Whether more than 92 percent of serious motorcycle accidents involve collisions between a motorcycle and another vehicle in motion?
(E)Whether variations in the size and potential speed of a motorcycle influence the risk of a serious accident’s occurring?
在看这道题目之前,我们先来举一个日常生活中的例子:
例一:
在学校里,成绩好的学生里女生占20%,成绩好的学生里男生占80%。加拿大研究生考试GMAT
因为成绩好的学生里男生占比更高,所以我们能据此认为男生更容易成绩好吗?
并不能!
对逻辑的套路比较了解的同学应该知道我们需要了解基数的情况。
例二:
在学校里,成绩好的学生里女生占20%,成绩好的学生里男生占80%。
同时,在学校里,女生占全校人数的20%,男生占全校人数的80%。
根据上面两个信息,我们能不能认为“男生相比于女生来说,更容易取得高分”呢?
很明显不能。
假设全校学生数量是x人,成绩好的学生是y人。
那么,成绩好的女生/女生人数=20%y/20%x=y/x
成绩好的男生/男生人数=80%y/80%x=y/x
大家可以发现,如果考虑到基数的情况,女生成绩好的可能性跟男生成绩好的可能性是完全相同的。
女生成绩好的可能性=成绩好的女生/女生,所以既要知道成绩好的女生的情况,还要知道女生总人数的情况。女生在总人数中的比例就相当于基数。
所以,已知成绩好的学生里女生占x%,成绩好的学生里男生占y%。
①如果女生在全校人数中占比x%,男生在全校人数中占比y%,那此时女生成绩好的可能性=男生成绩好的可能性;
②如果女生在全校人数中占比超过x%,男生在全校人数中小于y%,那此时女生成绩好的可能性男生成绩好的可能性;
③如果女生在全校人数中占比小于x%,男生在全校人数中超过y%,那此时女生成绩好的可能性>男生成绩好的可能性。
所以我们需要警惕:如果光给出一个比例是无法判断男生和女生相比谁高分的可能性更高的,我们还需要知道他们各自基数的情况。
一样的方式,我们来看一下前面这道例题:
Motorcycle-safety courses,offered by a number of organizations,teach motorcyclists important techniques for handling their vehicles and for safely sharing the road with other road with other road users.If more motorcyclists took these courses,there would be fewer serious motorcycle accidents.Data show that 92 percent of the motorcyclists who are involved in a serious motorcycle accident have never taken a motorcycle-safety course.
In assessing whether the data cited provide support for the position taken about more motorcyclists’taking the courses,it would be most useful to determine which of the following?
(A)Whether significantly more than eight percent of motorcyclists have taken a motorcycle-safety course?
(B)Whether it is riskier for a motorcyclist to ride with a passenger behind the rider than to ride alone?
(C)Whether the different organizations that offer motorcycle-safety courses differ in the content of the courses that they offer?
(D)Whether more than 92 percent of serious motorcycle accidents involve collisions between a motorcycle and another vehicle in motion?
(E)Whether variations in the size and potential speed of a motorcycle influence the risk of a serious accident’s occurring?
文章的逻辑关系是:
发生车祸的车主,92%都没上过安全课程。所以文章基于【没上过安全课程的车主在发生车祸的车主中占的比例非常高,而上过安全课程的车主在发生车祸的车主中占的比例非常低】,认为这就说明上过安全课程的车主不太会发生车祸。
跟前面的例子一样,我们需要知道他们各自的基数。
在发生车祸的车主中,上过安全课程的车主占8%,没上过安全课程的车主占80%。
同时,在总的汽车车主中,上过安全课程的车主占8%,没上过安全课程的车主占80%。
根据这两个数据,我们还能认为“上过安全课程的车主发生车祸的可能性很低”吗?
很明显不能。假设总的汽车车主是x人,发生车祸的车主是y人。
那么,上过安全课程的车主发生车祸的数量/上过安全课程的车主数量=8%y/8%x=y/x
没上过安全课程的车主发生车祸的数量/没上过安全课程的车主数量=92%y/92%x=y/x
大家可以发现,如果考虑到基数的情况,大家发生车祸的可能性是完全一样的,也就意味着上安全课程并没有降低车祸发生的概率。
同样,如果上过安全课程的车主数量在总车主中的占比>8%,没上过安全课程的车主数量在总车主中的占比92%,那此时上过安全课程的车主发生车祸的可能性没上过安全课程的车主发生车祸的可能性,说明安全课程的确会降低车祸发生的概率。